- The carry propagation time is an important attribute of the adder because it limits the speed with which two numbers are added.
- > To reduce the carry propagation delay time:
 - 1) Employ faster gates with reduced delays.
 - 2) Employ the principle of Carry Lookahead Logic.

Proof: (using carry lookahead logic)

$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

The output sum and carry are:

$$S_i = P_i \oplus C_i$$

$$\boldsymbol{C}_{i+1} = \boldsymbol{G}_i + \boldsymbol{P}_i \boldsymbol{C}_i$$

- ✓ G_i-called a carry generate, and it produces a carry of *I* when both A_i and B_i are *I*.
- ✓ P_i -called a *carry propagate*, it determines whether a carry into stage *i* will propagate into stage *i* + 1.
- ✓ The *Boolean function* for the carry outputs of each stage and substitute the value of each C_i form the previous equations:

$$\begin{cases} C_0 = input \, carry \\ C_1 = G_0 + P_0 C_0 \\ C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) \\ = G_1 + P_1 G_0 + P_1 P_0 C_0 \\ C_3 = G_2 + P_2 C_2 = G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 C_0) \\ = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \end{cases}$$

The three Boolean functions C₁, C₂ and C₃ are implemented in the *carry lookahead generator*.

The two level-circuit for the output carry C_4 is not shown, it can be easily derived by the equation.

> C_3 does not have to wait for C_2 and C_1 to propagate, in fact C_3 is propagated at the same time as C_1 and C_2 .