4.4.2 Design of Full-subtractors

A combinational circuit of full-subtractor performs the operation of subtraction of three bits-the minuend, subtrahend, and borrow generated from the subtraction operation of previous significant digits and produces the outputs difference and borrow. Let us designate the input variables minuend as X , subtrahend as Y , and previous borrow as Z , and outputs difference as D and borrow as B . Eight different input combinations are possible for three input variables. The truth table is shown in Figure $4.10(a)$ according to its functions.

Input variables		Outputs		
\boldsymbol{X}	\boldsymbol{Y}	Z	D	B
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	1	1	1

Figure 4-10 (a)

Figure 4.10(b) Map for function D

Figure 4.10(b) Map for function B.

Karnaugh maps are prepared to derive simplified Boolean expressions of D and B as in Figures 4.10(b) and 4.10(c), respectively.

The simplified Boolean expressions of the outputs are
$D=X^{\prime} Y^{\prime} Z+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z^{\prime}+X Y Z$ and
$B=X^{\prime} Z+X^{\prime} Y+Y Z$.
The logic diagram for the above functions is shown in Figure 4.11.

Similar to a full-adder circuit, it should be noticed that the configuration of the combinational circuit diagram for full-subtractor as shown in Figure 4.11 contains two-input and three-input AND gates, and three-input and four-input OR gates. Other

