configurations can also be developed where number and type of gates are reduced. For this, the Boolean expressions of D and B are modified as follows.

Figure 4-11
$\mathrm{D}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}+\mathrm{X}^{\prime} \mathrm{YZ} \mathrm{Z}^{\prime}+\mathrm{XY}^{\prime} \mathrm{Z}^{\prime}+\mathrm{XYZ}$
$=X^{\prime}\left(Y^{\prime} Z+Y Z '\right)+X\left(Y^{\prime} Z^{\prime}+Y Z\right)$
$=\mathrm{X}^{\prime}(\mathrm{Y} \oplus \mathrm{Z})+\mathrm{X}(\mathrm{Y} \oplus \mathrm{Z})^{\prime}$
$=\mathrm{X} \oplus \mathrm{Y} \oplus \mathrm{Z}$
$B=X^{\prime} Z+X^{\prime} Y+Y Z=X^{\prime} Y+Z\left(X^{\prime}+Y\right)$
$=X^{\prime} Y+Z\left(X^{\prime} Y+X^{\prime} Y^{\prime}+X Y+X^{\prime} Y\right)$
$=X^{\prime} Y+Z\left(X^{\prime} Y+X^{\prime} Y^{\prime}+X Y\right)$
$=X^{\prime} Y+X^{\prime} Y Z+Z\left(X^{\prime} Y^{\prime}+X Y\right)$
$=\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{Z}(\mathrm{X} \oplus \mathrm{Y})^{\prime}$
Logic diagram according to the modified expression is shown in Figure 4.12.

Figure 4-12

Note that the full-subtractor developed in Figure 4.12 consists of two 2-input AND gates, two 2-input XOR (Exclusive-OR) gates, two INVERTER gates, and one 2input OR gate. This contains a reduced number of gates as well as type of gates as compared to Figure 4.12. Also, it may be observed, if compared with a half-subtractor circuit, the full-subtractor circuit can be developed with two half-subtractors and one OR gate.

