$>$ The implementation of half adder using exclusive-OR and an AND gates is used to show that two half adders can be used to construct a full adder.
$>$ The inputs to the $\mathbf{X O R}$ gate are also the inputs to the AND gate.

2. Full Adder

Full Adder is a combinational circuit that performs the addition of three bits (two significant bits and previous carry).
$>$ It consists of three inputs and two outputs, two inputs are the bits to be added, the third input represents the carry form the previous position.
\rightarrow The full adder is usually a component in a cascade of adders, which add 8,16 , etc, binary numbers.

Inputs			Outputs		
X	Y	$C_{\text {in }}$	S	$C_{\text {out }}$	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
Truth table for the full adder					

> The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1 .
$>$ The $C_{\text {out }}$ output has a carry 1 if two or three inputs are equal to 1 .
$>$ The Karnaugh maps and the simplified expression are shown in the following figures:

$$
\left\{\begin{array}{ll}
\mathbf{S}=\overline{\mathbf{X}} \overline{\mathbf{Y}} \mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{C}_{\mathbf{i n}}}+\mathbf{X} \overline{\mathbf{Y}} \overline{\mathbf{C}_{\mathbf{i n}}}+\mathbf{X Y \mathbf { C } _ { \mathbf { i n } }} & \\
\mathbf{C}_{\mathbf{o u t}} \mathbf{X Y}+\mathbf{X C} \mathbf{C}_{\mathbf{i n}}+\mathbf{Y} \mathbf{C}_{\mathbf{i n}} & \mathbf{1}
\end{array}\right\} \text { (Sum of products) }
$$

