Example:

Subscript i	3	2	1	0		
Input Carry	0	1	1	0	C _i	
A	1	0	1	1	4.	
+	1	v	1	1	Ai	$C_0 = 0$
B	0	0	1	1	B_i	
Sum	1	1	1	0	S_i	
Output Carry	0	0	1	1	C_{i+1}	

Carry Propagation

- The addition of A + B binary numbers in *parallel* implies that all the bits of A and B are available for computation at the same time.
- As in any combinational circuit, the signal must *propagate* through the gates before the correct output sum is available.
- The output will not be correct unless the signals are given enough time to propagate through the gates connected form the input to the output.
- The longest *propagation delay time* in an adder is the time it takes the carry to propagate through the full adders.

- > The signal form the carry input C_i to the output carry C_{i+1} propagates through an **AND** gate and an **OR** gate, which equals **2** gate levels.
 - If there are 4 full adders in the binary adder, the output carry C_4 would have $2 \times 4 = 8$ gate levels, form C_0 to C_4
 - For an *n*-bit adder, *2n* gate levels for the carry to propagate form input to output are required.