Example:

$A+B \quad(A=1011)$ and $(B=0011)$

Subscript i	3	2	1	0		$C_{0}=0$
Input Carry	0	1	1	0	C_{i}	
A	1	0	1	1		
+	1	0	1	1	A_{i}	
B	0	0	1	1	$\boldsymbol{B}_{\boldsymbol{i}}$	
Sum	1	1	1	0	S_{i}	
Output Carry	0	0	1	1	C_{i+1}	

Carry Propagation

$>$ The addition of $A+B$ binary numbers in parallel implies that all the bits of A and B are available for computation at the same time.
$>$ As in any combinational circuit, the signal must propagate through the gates before the correct output sum is available.
> The output will not be correct unless the signals are given enough time to propagate through the gates connected form the input to the output.
$>$ The longest propagation delay time in an adder is the time it takes the carry to propagate through the full adders.

Full Adder with P and G
$>$ The signal form the carry input C_{i} to the output carry C_{i+1} propagates through an $A N D$ gate and an $O R$ gate, which equals 2 gate levels.

- If there are 4 full adders in the binary adder, the output carry C_{4} would have $2 \times 4=8$ gate levels, form C_{0} to C_{4}
- For an n-bit adder, $2 n$ gate levels for the carry to propagate form input to output are required.

