$>$ The logic diagrams for the full adder implemented in sum-of-products form are the following:

$>$ It can also be implemented using two half adders and one OR gate (using XOR gates).

$$
\left\{\begin{array}{l}
S=C_{i n} \oplus(X \oplus Y) \\
C_{\text {out }}=C_{i n} \cdot(X \oplus Y)+X Y
\end{array}\right\}
$$

## Proof:

The sum:

$$
\begin{aligned}
\mathbf{S} & =\overline{\mathbf{X}} \overline{\mathbf{Y}} \mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{C}_{\mathbf{m}}}+\mathbf{X} \overline{\mathbf{Y}} \overline{\mathbf{C}_{\mathbf{i n}}}+\mathbf{X Y C} \mathbf{C}_{\mathbf{i n}} \\
& =\overline{\mathbf{C}_{\mathbf{i n}}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{C}_{\mathbf{i n}}(\overline{\mathbf{X}} \overline{\mathbf{Y}}+\mathbf{X Y}) \\
& =\overline{\mathbf{C}_{\mathbf{i n}}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{C}_{\mathbf{i n}} \overline{(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})} \\
S & =C_{i n} \oplus(X \oplus Y)
\end{aligned}
$$

The carry output:

$$
\begin{aligned}
C_{\text {out }} & =\overline{\mathbf{X}} \mathbf{Y C} \mathbf{C}_{\mathbf{i n}}+\mathbf{X} \overline{\mathbf{Y}} \mathbf{C}_{\mathbf{i n}}+\mathbf{X Y C} \mathbf{C}_{\mathbf{i n}}+\mathbf{X Y} \overline{\mathbf{C}_{\mathbf{n}}} \\
& =\mathbf{C}_{\mathbf{i n}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{X Y}\left(\mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{C}_{\mathbf{i n}}}\right) \\
C_{\text {out }}= & C_{\text {in }} \cdot(X \oplus Y)+X Y
\end{aligned}
$$

