Digital Circuits - Conversion of Flip-Flops

In previous chapter, we discussed the four flip-flops, namely SR flip-flop, D flip-flop, JK flip-flop \& T flipflop. We can convert one flip-flop into the remaining three flip-flops by including some additional logic. So, there will be total of twelve flip-flop conversions.

Follow these steps for converting one flip-flop to the other.

- Consider the characteristic table of desired flip-flop.
- Fill the excitation values inputs of given flip-flop for each combination of present state and next state. The excitation table for all flip-flops is shown below.

Present State	Next State	SR flip-flop inputs		D flip-flop input	JK flip-flop inputs	T flip-flop input	
$\mathbf{Q} t$	Q $t+1$	\mathbf{S}	\mathbf{R}	\mathbf{D}	\mathbf{J}	\mathbf{K}	\mathbf{T}
0	0	0	x	0			
0	1	1	0	1	1	x	0
1	0	0	1	0	x	1	1
1	1	x	0	1	x	0	1

- Get the simplified expressions for each excitation input. If necessary, use Kmaps for simplifying.
- Draw the circuit diagram of desired flip-flop according to the simplified expressions using given flip-flop and necessary logic gates.

Now, let us convert few flip-flops into other. Follow the same process for remaining flipflop conversions.

SR Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of SR flip-flop to other flip-flops.

- \quad SR flip-flop to D flip-flop
- \quad SR flip-flop to JK flip-flop
- \quad SR flip-flop to T flip-flop

SR flip-flop to D flip-flop conversion

Here, the given flip-flop is SR flip-flop and the desired flip-flop is D flip-flop. Therefore, consider the following characteristic table of D flip-flop.

D flip-flop input	Present State	Next State
D	$\mathbf{Q} t$	$\mathbf{Q} t+1$
0	0	0
0	1	0
1	0	1
1	1	1

We know that SR flip-flop has two inputs S \& R. So, write down the excitation values of SR flip-flop for each combination of present state and next state values. The following table shows the characteristic table of D flip-flop along with the excitation inputs of SR flip-flop.

D flip-flop input	Present State	Next State		SR flip-flop inputs	
\mathbf{D}	$\mathbf{Q} t$	$\mathbf{Q} t+1$	\mathbf{S}	\mathbf{R}	
0	0	0	0		
0	1	0	0	1	
1	0	1	1	0	
1	1	1	x	0	

From the above table, we can write the Boolean functions for each input as below.

$$
\begin{aligned}
& S=m_{2}+d_{3} \\
& R=m_{1}+d_{0}
\end{aligned}
$$

We can use 2 variable K-Maps for getting simplified expressions for these inputs. The k-Maps for $S \& R$ are shown below.

So, we got $S=D \& R=D^{\prime}$ after simplifying. The circuit diagram of D flip-flop is shown in the following figure.

This circuit consists of SR flip-flop and an inverter. This inverter produces an output, which is complement of input, D . So, the overall circuit has single input, D and two outputs $\mathrm{Q} t \& \mathrm{Q} t$ '. Hence, it is a \mathbf{D} flipflop. Similarly, you can do other two conversions.

D Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of D flip-flop to other flip-flops.

- D flip-flop to T flip-flop
- D flip-flop to SR flip-flop
- D flip-flop to JK flip-flop

D flip-flop to T flip-flop conversion

Here, the given flip-flop is D flip-flop and the desired flip-flop is T flip-flop. Therefore, consider the following characteristic table of T flip-flop.

T flip-flop input	Present State	Next State
\mathbf{T}	$\mathbf{Q} t$	$\mathbf{Q} t+1$
0	0	0
0	1	1
1	0	1
1	1	0

We know that D flip-flop has single input D. So, write down the excitation values of D flip-flop for each combination of present state and next state values. The following table shows the characteristic table of T flip-flop along with the excitation input of D flip-flop.

T flip-flop input	Present State	Next State	D flip-flop input
\mathbf{T}	$\mathbf{Q} t$	$\mathbf{Q} t+1$	\mathbf{D}
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

From the above table, we can directly write the Boolean function of D as below.

$$
D=T \oplus Q(t)
$$

So, we require a two input Exclusive-OR gate along with D flip-flop. The circuit diagram of T flip-flop is shown in the following figure.

This circuit consists of D flip-flop and an Exclusive-OR gate. This Exclusive-OR gate produces an output, which is Ex-OR of T and Q t. So, the overall circuit has single input, T and two outputs $\mathrm{Q} t \& \mathrm{Q} t$ '. Hence, it is a T flip-flop. Similarly, you can do other two conversions.

JK Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of JK flip-flop to other flip-flops.

- JK flip-flop to T flip-flop
- JK flip-flop to D flip-flop
- JK flip-flop to SR flip-flop

JK flip-flop to T flip-flop conversion

Here, the given flip-flop is JK flip-flop and the desired flip-flop is T flip-flop. Therefore, consider the following characteristic table of T flip-flop.

T flip-flop input	Present State	Next State
\mathbf{T}	$\mathbf{Q} t$	$\mathbf{Q} t+1$
0	0	0
0	1	1
1	0	1
1	1	0

We know that JK flip-flop has two inputs J \& K. So, write down the excitation values of JK flip-flop for each combination of present state and next state values. The following table shows the characteristic table of T
flip-flop along with the excitation inputs of JK flipflop.

T flip-flop input	Present State	Next State	JK flip-flop inputs	
\mathbf{T}	$\mathbf{Q} t$	$\mathbf{Q} t+1$	\mathbf{J}	\mathbf{K}
0	0	0	0	x
0	1	1	x	0
1	0	1	1	x
1	1	0	x	1

From the above table, we can write the Boolean functions for each input as below.

$$
\begin{aligned}
& J=m_{2}+d_{1}+d_{3} \\
& K=m_{3}+d_{0}+d_{2}
\end{aligned}
$$

We can use 2 variable K-Maps for getting simplified expressions for these two inputs. The k-Maps for J \& K are shown below.

K-Map for K

So, we got, $\mathrm{J}=\mathrm{T} \& \mathrm{~K}=\mathrm{T}$ after simplifying. The circuit diagram of T flip-flop is shown in the following figure.

This circuit consists of JK flip-flop only. It doesn't require any other gates. Just connect the same input T to both $\mathrm{J} \& \mathrm{~K}$. So, the overall circuit has single input, T and two outputs $\mathrm{Q} t \& \mathrm{Q} t$ '. Hence, it is a T flip-flop. Similarly, you can do other two conversions.

T Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of T flip-flop to other flip-flops.

- T flip-flop to D flip-flop
- T flip-flop to SR flip-flop
- T flip-flop to JK flip-flop

T flip-flop to D flip-flop conversion

Here, the given flip-flop is T flip-flop and the desired flip-flop is D flip-flop. Therefore, consider the characteristic table of D flip-flop and write down the excitation values of T flip-flop for each combination of present state and next state values. The following table shows the characteristic table of D flip-flop along with the excitation input of T flip-flop.

D flip-flop input	Present State	Next State	T flip-flop input
D	$\mathbf{Q} t$	$\mathbf{Q} t+1$	\mathbf{T}
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

From the above table, we can directly write the Boolean function of T as below.

$$
T=D \oplus Q(t)
$$

So, we require a two input Exclusive-OR gate along with T flip-flop. The circuit diagram of D flip-flop is shown in the following figure.

This circuit consists of T flip-flop and an Exclusive-OR gate. This Exclusive-OR gate produces an output, which is Ex-OR of D and $\mathrm{Q} t$. So, the overall circuit has single input, D and two outputs $\mathrm{Q} t \& \mathrm{Q} t^{\prime}$. Hence, it is a D flip-flop. Similarly, you can do other two conversions.

